数学老师在教导学生之前,都会准备好教案与讲课稿,以便上课的顺利进行,接下来让我们来看看《正比例反比例》的优秀教学设计内容推荐吧。
正比例反比例教学设计一
教学内容:
教材p31-33。
教学目标:
1.通过复习,使学生进一步理解掌握正比例和反比例的意义,并会区分正比例和反比例的意义。
2.通过复习,使学生熟练掌握运用正、反比例的意义判断生活中一些成正、反比例的量的方法。
教学重点:
区分并掌握判断正反比例的方法。
教学难点:
熟练判断生活中一些量是否成正反比例。
教具准备:ppt课件。
教学过程:
一、复习导入。
1.口答:什么叫做成正比例的两个量,如何用字母公式表示他们的关系 ?
2.口答:什么叫做成反比例的两个量,如何用字母公式表示他们的关系?
3.揭题。 本节课我们来上一节复习课,复习一下刚学完的正比例和反复比例的有关知识(板书课题:正比例和反比例)
二、自主探究。
1、(看大屏幕)一辆汽车行驶的速度为90千米/时,汽车行驶的间和路程如下:
(1)指名读题,能接着填完吗?5小时的时候,路程是多少千米?
(2)表中有哪两种量,路程是怎样随时间变化的?
(3)这两种量成什么关系?为什么?
(4)用关系式表示本题的等量关系。(板书关系式)
2、老师用60元去买笔记本,笔记本的单价和可以购买的数量如下表。
(1) 表中有哪几种变化的量?
(2) 数量是怎样随着单价变化的?它们之间有怎样的关系式?
(3)数量和单价成什么关系?
3.比较正比例和反比例的异同点 。
(1)学生独立讨论。
(2)集体交流,并填写下表正比例和反比例的相同点和不同点:(填表)
三、巩固练习。
1、判断各题中两种量是不是成比例,成什么比例?
收入一定,支出和结余。
出勤率一定,出勤人数和全班总人数。
圆柱的侧面积一定,它的底面周长和高。
(4)长方形的周长一定,它的长和宽。
2、思考: 路程、速度和时间这三个量中每两个量之间有什么样的比例关系?
当路程一定时,速度和时间成反比例关系。
当时间一定时,路程和速度成正比例关系。
当速度一定时,路程和时间成正比例关系。
四、课堂小结。
这节课学习的是什么内容?判断两种量是不是成正比例还是成反比例,关键是什么?
正比例反比例教学设计二
教学内容:
六年级下册总复习83—85页《正比例、反比例》。
教学目标:
(一)知识目标:
(1)通过回顾与交流,鼓励学生自己独立整理知识,形成系统。
(2)通过具体问题的认识进一步认识正比例、反比例的量。
(二) 数学思考与解决问题
通过复习与整理加深对正、反比例意义的理解。并运用正、反比例的知识解决一些实际问题,为以后学习函数打下基础。
(三)情感态度
培养学生认真思考的习惯,学会区分正反比例。
教学重、难点:
(1)进一步认识正、反比例的意义,并能运用正、反比例的意义解决实际问题。
(2)培养学生的问题意识,不断积累活动经验,体会重要的数学思想。
教法学法
自主复习、小组交流、全班交流、互帮互学
教学准备
表格、课件、小黑板
教学过程
一、情境创设,导入复习
1、判断下面每题中的两种量成什么比例关系?
①速度一定,路程和时间( ) ②路程一定,速度和时间( )
③单价一定,总价和数量( ) ④全校学生做操,每行站的人数和站的行数( )
2、根据条件说出数学关系式,再说出两种相关联的量成什么比例,并列出相应的等式。
(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。
(2)一列火车从甲地开往乙地,每小时行90千米,要行4小时;每小时行80千米,要行x小时。
指名学生口答,老师板书。
二、回顾整理,构建网络
(一)比的知识:
1. 谁来举个例子说说什么是比?什么是比例?什么是比的基本性质?(引导学生列举:“按比例分配”、“比例尺”、“图形的放大与缩小”等例)
2. 说一说用比的知识可以解决哪些实际问题。
让学生体会比在解决实际问题时的应用。
3. 完成教科书p83“回顾与交流”的3题
两人一组,合作完成后,全班交流结果,让学生比较后回答有什么发现。
(二)比和分数、除法的联系
出示:a∶b=( )(( ))=( )÷( )(b≠0)教师问:
1. 你会填写这个的等式吗?学生填好后,再问:
2. 你的根据是什么?(比和分数、除法的联系)
3. 那么比和分数、除法的联系是什么?它们的区别呢?
4. b为什么不能等于0?小组议一议,再交流。
5. 谁来说说比的基本性质与分数的基本性质、商不变的规律?它们有什么联系吗,谁来说说?
(1)判断:比的前项和后项都乘或都除以相同的数,比值不变。(让学生说说为什么?)
(2)填空:( )(( ))=( )÷( )=( )∶( )(填好后展示学生不同的结果。)
(三)比例尺的知识
什么是比例尺?
(四)正比例,反比例的知识:
(1) 小组合作:把有关正比例反比例的知识在小组内进行交流,整理成知识网络图。
(2) 班内交流,全班分享
(3) 全班同学进行优化, 形成知识网络图。
变化的量---正比例(意义、图象、应用)--反比例(意义、图象、应用)---图形的放缩---比例尺
三:重点复习,强化提高:
1. 一辆汽车在高速路上行驶,速度保持在100千米/时,说一说汽车行驶的路程随时间变化的情况,并用多种方式表示这两个量之间的关系。
(1)学生独立思考
(2) 同桌交流
3)全班交流
a自然语言 b 列表 c 画图 d 关系式
2. 举出生活中正、反比例的例子
3. 完成课本84页巩固与应用
独立完成,班内交流。
四.自主检测,完善提高:
判断并说明理由
(1)出油率一定,香油的质量与芝麻的质量。
(2) 一捆100米长的电线,用去的长度与剩下的长度。
(3) 三角形的面积一定,它的底和高。
(4) 一个数与它的倒数。
五、完成后班内交流,这节课你有什么收获?
板书设计
正比例和反比例
比 比例、应用
分数、比、除法之间的关系
课后反思
本课时有以下特点:1、抓住复习起点,以小组合作的形式自主讨论复习,既增强了学生的主动性和自觉性,也面向全体学生进行查漏补缺。2、借助表格的方式来整理复习,更直观地体会比和比例、正比例和反比例的知识点和不同之处。3、能整合所有的知识,运用多种方法解决简单的实际问题,巩固知识。
正比例反比例教学设计三
【教学目标】
1.使学生进一步认识成正比例和反比例的量,掌握两种量是否成比例、成什么比例的思考方法。
2.使学生通过掌握判断两种相关联的量是否成正比例或反比例的方法,提高分析、判断的能力。
3.使学生进一步体会比和比例知识的应用价值,感受不同领域的数学内容之间的密切联系。认识成正比例和反比例的量,使学生感受正 、反比例是描述数量关系及其变化规律的又一种有效的数学模型。
二、教学建议
复习正比例和反比例,重点是它们的意义。教材让学生回忆判断两种量是否成正比例或反比例的方法,重温正比例关系的特征是两种相关联变量的商保持一定,反比例关系的特征是两种相关联变量的积保持一定。再通过第7、8题的判断,进一步巩固正比例和反比例的概念。第9题复习正比例的图像,其中汽车行驶的路程和耗油量是否成正比例,要利用图像找出几组相对应的数,组成比并求出比值,根据正比例的意义进行判断。
复习比例尺的知识仅编排一道题,利用平面图的比例尺和量出的图上距离,计算相应的实际距离。教学第10题要说说这幅平面图的比例尺和具体含义,从线段比例尺得出数值比例尺,回忆比例尺的意义和算法。要通过解题归纳求实际距离的方法及注意点,还要说说怎样求图上距离。
三、知识链结
1.正比例和反比例 (教科书六下 p62 例1、例2 、 p63 例3)
2.比例尺 (教科书六下 p48 例6 、 p49例7 )
四、教学过程
(一)正比例和反比例的意义。
1.教师提问:根据正比例和反比例的意义,我们怎样判断两种量是否成正比例或反比例关系?(小组讨论后,交流)
2.小结:第一,这两种量是不是相互关联?其中一种量是否随着另一种量的变化而变化?第二,这两种量中每一组对应的数的比值(或积)是否一定 。
3.举出一些生活中成正比例或反比例量的例子,在小组里交流。
例如:黄瓜的单价一定,数量和总价成正比例。因为,第一,数量和总价这两种量是相互关联的,其中一种量总价随着另一种量数量的变化而变化。第二,这两种量中每一组对应的数的比值都是单价。单价一定,所以这两种量是成正比例的量。
(二)练一练
1.下表中两种量成比例吗?为什么?
加数 12 2.5 14 24
加数 18 27.5 16 6
总吨数 42 26 100 24.4
余下吨数 41 25 99 23.4
因数 3 5 3 20
因数 15 9 10 1.5
学生说一说每张表中, 第一,这两种量是不是相互关联?其中一种量是否随着另一种量的变化而变化?第二,这两种量中每一组对应的数的比值(或积)是否一定。再作出相应的判断
2.完成教科书95页“练习与实践”
第7题:让学生先独立做,再讲评。讲评时注意帮助学生解决困难。
第8题:引导学生列举几组对应的数值再具体分析每组中两个数的关系后再判断。
第9题:其中第1小题让学生根据图中标出的点的位置算出相应的耗油量与行驶路程的比值,再作判断。(行驶75千米的耗油量是6升。)第2小题让学生在教材提供的方格图上描点、连线,再引导学生联系画出的图象判断汽车在市区行驶时,行驶的路程与耗油量成不成正比例。体会数形结合在解决问题方面的价值。
(三)复习比例尺
1.教师提问:什么叫比例尺?比例尺有几种类型?举例说说它的意思?(重点是线段比例尺)
2.举例说说怎样求图上距离?怎样求实际距离。
3.完成教科书95页“练习与实践”第10题。
(四)评价小结:
学了本课你对所学知识有什么新认识?还有什么问题?
正比例反比例教学设计四
正、反比例的意义,理顺量与量的对应关系,提高判断和解答正、反比例应用题的能力,灵活把握及转化应用题的数量关系,加深知识的纵向联系,横向沟通。
教学重点:进一步掌握正、反比例关系的意义。
教学难点:正确应用比例知识解答基本的正、反比例应用题。
教学过程: 第一层次,基本性应用练习的设计
1、判断下面每题中的两种量成什么比例关系。
(1)、一个因数一定,积和另一个因数 积一定,一个因数和另一个因数。
(2)、平行四边形的面积一定,它的底和高。
(3)、货物的总吨数一定,每次运货的吨数和次数。
(4)、每袋茶叶的千克数一定,茶叶的总千克数和袋数。
(5)、拖拉机每天耕地的公顷数一定,耕地总面积和天数。 问:判断两种相关联的量成什么比例,我们关键是看它们的什么?
2、揭题 我们可以应用比例知识解答相应的应用题,这节课,我们练习正、反比例应用题。
3、根据已知条件,将题目补充完整,使之成为用正或反比例解答的应用题,并列式。(口答)
(1)、同学们做广播操,每行站15人,站了12行,( )?
(2)、 100克海水可以晒出3克盐,照这样计算,( )?
4、对比练习:
(1)解放军战士刘刚从兵营骑马去马场,每小时行60千米,要3小时到达。如果每小时行72千米,几小时可以到达马场?
(2)解放军战士刘刚从兵营骑马去马场,3小时行180千米,照这样计算,5小时行多少千米?
(1)读题
(2)师:现在我们运用比例知识来解答这两道题,首先看第一题,请同学们找一找数量之间有怎样的关系式?两种相关联的量成什么比例关系? 逐步出示数量关系式——对应关系——列出等式。
(3)按照第一题的讨论方法思考第二题。
(4)比较:正、反比例应用题解题过程有什么相同的地方?解题方法有什么不同?
(5)小结。板书: 判断比例关系
(6)找出对应数值 列出等式解答
5、只列式不计算:(用比例知识解,写清解设……)
(1)读一本故事书,小红每天读25页,要读12天;如果要10天读完,每天应读多少页?
(2)用同样的砖铺地,铺18平方米要用618块砖;如果铺24平方米,要用多少块砖?
(3)一间房子要用方砖铺地,需要用面积是9平房分米的方砖96块;如果改用面积是4平房分米的方砖要多少块?
(4)安装一条下水管道,15天安装了120米;照这样计算,20天能安装多少米?
(5)100克蜂蜜里含有34.5克葡萄糖;照这样计算,1.5千克蜂蜜里含有多少千克葡萄糖?
第二层次,综合性应用练习的设计。
1、解决生活中的问题 把1.5米长的竹竿直立在地上,量得它的影长是1.2米,
(1)同时量得学校旗杆的影长是6.4米,学校旗杆高多少米?
(2)量出自己身边一个物体的高度,你能不能求出它的影长?
2、知识间的联系 两个底面半径相等的圆柱,第一个圆柱的高是第二个圆柱的高的 。第二个圆柱的体积是60立方分米,第一个圆柱的体积是多少? 问:“ 第一个圆柱的高是第二个圆柱的高的 ”还可以怎么说? 思考:当两个圆柱底面积相等时,
(1)圆柱体积与高成什么比例?
(2)两个圆柱体积的比与对应高的比有怎样的关系?为什么? 你能有几种方法解答? 说明:按照分数与比之间的联系,有些应用题可以用分数和比例知识采用不同的方法解答。
3、变式训练,加深拓宽
(1)选择正确的解法:仪器厂现有5台机器,每天可生产1800个零件;如果用8台同样的机器,每天可生产零件多少个? a.8x x=1800x5 b.1800:5= x:8 同桌讨论:(1)为什么选择b?
(2)用a解为什么是错误的?
(3)它是什么关系的应用题?
(4)如果将上题改成“……如果再增加8台这样的机器……”,求每天可生产零件多少个? (3)改上题问句为“每天可多生产零件多少个?”
(5)假如把上题条件再改为“……用8台这样的机器,每天可多生产零件多少个?”
第三层次,创造性应用练习的设计。
1. 一辆汽车从甲地开往乙地,按每小时40千米的速度,要行驶7.5小时;实际3小时行驶了150千米,这样行驶完全程要几小时? 学生先独立思考列式,然后指名反馈。 同桌学生讨论各个算式。 师生集体讨论。
2、在含有铅375克和锡 237克的合金中,增加铅多少克,可使铅与锡的比为5:3? 3、
三.总结:
板书设计:
正比例 :y÷x=k(一定) 反比例:x×y=k(一定)